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The inclusion of electrostatic and dispersion interactions into potentials 
of mean torque for solutes dissolved in uniaxial liquid crystal solvents 

by J. W. EMSLEY*, W. E. PALKEt and G. N. SHILSTONE 
Department of Chemistry, University of Southampton, 

Southampton SO9 5NH, England 

(Received 19 October 1990; accepted 26 January 1991) 

A potential of mean torque is derived for a solute at infinite dilution in a uniaxial 
liquid crystal solvent, which contains terms originating from the dispersion 
interaction, and the electrostatic interaction between quadrupole moments on both 
molecules. It is shown that the electrostatic term is non-zero only if the solute- 
solvent vectors are distributed with lower than spherical symmetry. If this 
distribution has cylindrical symmetry then both the electrostatic and dispersion 
terms in the potential of mean torque are shown to depend on order parameters for 
the orientational distribution of the solute-solvent vectors, as well as on the order 
parameters of the solvent molecules. 

1. Introduction 
The basic idea of mean field theories of the orientational order of molecules in 

uniaxial liquid crystals, or of solutes dissolved in them, is to represent the average, 
anisotropic potential energy by a potential of mean torque, U(P, y), where and y are 
the polar angles made by the mesophase director in a molecule-fixed frame. A general 
approach to obtaining the angular dependence of U(P, y )  is to recognize that it must be 
a continuous, well-behaved function of these variables, and so can be expanded as an 
infinite set of modified spherical harmonics, C,,,(D,y), of even rank, thus [l] 

u(P, Y)= -CL,evenCrn&,,mCL,rnn(P, Y). (1) 
Of course, to be useful the expansion must be terminated, and most theories have 
adopted the simplest form, that with L = 2 and m = 0, f 2, giving 

U(P,y)= -&2,oC2,0(B,Y)-&2,2C2,2(P,Y)-&2, - 2 c 2 ,  - 2 ( P , Y ) ,  

(2) 
The c2, rn are expansion coefficients to be obtained by comparison with experiment. To 
progress further it is usual to assume that the E ~ , , ,  depend on C2,,,, the orientational 
order parameters of the liquid crystal molecules, so that 

(3) 

- - -&2,oC2,0(P,Y)-2  Re(%,zC2,2(AY)). 

6 2  ~ rn = C n c 2 r n n C 2 ,  m- 

The coefficients UZmn are dependent on the strength of the anisotropic intermolecular 
interactions. This is the simplest expression for the E ~ ,  rn which satisfies the necessary 
condition that these coefficients vanish if the sample is isotropic. 
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644 J. W. Emsley et al. 

A convenient way to test whether this truncated form of U(P,y) is indeed a 
reasonable approximate form for the potential of mean torque is to obtain values for 
the coefficients from observed values of the orientational order parameters, cz,m. Such 
studies on pure liquid crystals are complicated by the molecular flexibility that 
invariably exists. The importance of this factor can be reduced by studying the 
orientational order of solutes dissolved in liquid crystal solvents; the choice of a rigid 
solute confines the complication of non-rigidity to the solvent. The potential of mean 
torque, U(& y2), for a solute at infinite dilution in a uniaxial solvent has the same form 
as equation (2), and the E ~ , ~  are still given by equation (3), with the CZ,, as the order 
parameters of the solvent [2], and the UZmn being determined by the strength of 
anisotropic, solute-solvent interactions. Note that m refers to the solvent and n to the 
solute. 

The values of the E ~ , ~  can be obtained from the experimental values of the two solute 
order parameters, S,, and Sxx-Syy, which are related to U(flz,yz) by 

s z z = z - l  Cz,o(Pz,Yz)exP{- U(Bz,Yz)/W sinPzdPzdY2, (4) s 
and 

s,, - s,, = J6z- cz, z(Pz, Yz) exp { - U(P2, Yz)lkT} sin P z  dPz drz, (5 )  s 
s 

where 

z = exp { - U(P2 Y Z ) / W  sin P z  dP2 dY 2' (6) 

The biaxial order parameter S,, - S,, vanishes if cZ,  is zero, and this occurs when the 
solute has an axis of at least threefold symmetry. There are advantages in choosing 
solutes for study for which Sxx- S,, is not zero, for this gives a unique insight into the 
nature of the potential of mean torque. The advantage in studying biaxial solutes is that 
the solvent order parameters Cz,z are only about 5 per cent of the major order 
parameter Cz, ol so that the solute-solvent coefficients are to a good approximation 
both linear in Cz,o 

- 
EZ,O = ~ z o o c z , o ~  (7) 

E2.2 = ~ z 0 2 C z , o ,  (8) 
- 

so that their ratio 

1 = 62,  21% 0 

is simply 
(9) 

t? = % 0 2 / ~ Z O O .  (10) 
The order parameters contain most of the temperature dependence in equation (3), and 
so 1 should have only a weak temperature dependence. Furthermore, if the potential of 
mean torque is dominated by a single, second rank interaction, such that 

(1 1) 

1 = A z ,  z(solute)/Az,o(solute) (12) 

U Z O n  = BA,, ,(solvent)A,,,(solute), 

where B depends on the type of interaction, then 
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Potentials of mean torque for solutes 645 

and 1 should be independent of the solvent; we have assumed that B is independent of n. 
The values of A,,,(solute) and A,,,(solvent) are determined by the nature of the 
dominant interaction, so that for dispersion forces, for example, the polarizability 
tensor, a is identified with A. 

Values of 1 for a number of solutes dissolved in a range of liquid crystal solvents 
have been measured, and in all cases it is found that 1 is temperature dependent, always 
decreasing as the transition to the isotropic phase is approached. This behaviour 
suggests a common origin for the temperature dependence, but the explanation for this 
phenomenon is as yet not clear; it may indicate that more than one interaction 
contributes to the magnitude of the UZmn, but it may also stem from the truncation of 
U(Bz,yz) at second rank terms. It has also been found that A is strongly solvent 
dependent, and this is strong evidence that a single type of interaction does not 
dominate the potential of mean torque for a particular solute in different liquid crystal 
solvents. 

This same conclusion has been reached by studies [3-61 of both uniaxial and biaxial 
solutes by noting the orientational ordering of solutes in a particular pair of solvents, 
EBBA and ZLI 1132. This particular pair were chosen for study because of the 
observation that hydrogen molecules have their symmetry axes ordered such that S,, is 
positive in ZLI 1132 and negative in EBBA, and passes through zero for a particular 
mixture of the two solvents. The suggested interpretation for this behaviour is that the 
orientational ordering of hydrogen in these solvents is dominated by the interaction 
between the electric quadrupole moment of hydrogen, Q,, o, and an average electric 
field gradient, F,,, produced at the solute by the solvent molecules. Data on hydrogen 
were used to obtain the values of F,, for EBBA and ZLI 1132, which are found to be of 
opposite sign. 

The experimental evidence for more than one type of interaction making a 
significant contribution to U(&, y,) is strong, and indeed our knowledge of the nature 
of the forces between molecules suggests that three types of force should be considered 
dispersion and electrostatic interactions and short range repulsion. The question that is 
addressed here is whether it is possible to derive a potential of mean torque which 
includes the effects of these interactions, and which is simple enough to be characterized 
by comparison with experiment. 

2. Theory 
The first point to note is that short range interactions cannot be allowed for 

explicitly when attempting to derive a potential of mean torque with a simple, practical 
form, and whilst maintaining a consistent set of simplifying assumptions. Attempts 
have been made to include short range repulsion into potentials of mean torque, but 
these rely on assuming simplified forms for the potential and ad hoc assumptions about 
the separability of the variables involved in the averaging process. Thus, for short range 
interactions of any kind the separation between molecules rij,  and the orientation of the 
molecules, Ri, relative to the mesophase director, are dependent variables, and this 
poses fundamental difficulties when attempting to perform the averages necessary to 
derive U(fi2, y,). 

The first contribution to the interaction between molecules that we shall consider 
are the electrostatic terms, since these give rise to an important problem which also 
has implications for the dispersion interaction. We start from a pair potential, 
U,,(R,, Q,, a,,, r1J; R,, Q,, are the orientations of molecules 1 and 2, and Q l z  that of 
the intermolecular vector r,,. The electrostatic contribution to U12(Rl,R2, a,,, r , , )  
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646 J. W. Emsley et al. 

can be represented by coulombic forces between the charges on individual atoms in the 
two molecules, however, this is not a convenient form from which to derive a potential 
of mean torque. It is usual, therefore, to assume that the intermolecular separation, r12, 
is large enough that the electrostatic potential can be expressed in terms of the 
interactions between sets of point multipoles located on each molecule. This is not to 
say that short range interactions are unimportant, indeed for liquid crystal molecules 
there is evidence in some cases for the importance of anti-parallel pairing of molecules, 
but that they cannot be written in a general form. These assumptions mean that the pair 
potential can be expressed as a product of a distance dependent and an angular 
dependent function, as discussed by Stone [7]. Thus, 

where 

(14) s?;*J(nI, -(z) . L - L - J x  (kk'M)Dlf;n(Rl)olf'~:',(n2)cJ, LL'J d R 1  2); 

here ($;) is a 3j symbol. The contributions to U,, from electrostatic terms have the 
form 

where 

[L;L']= {(2L+2L'+ 1)!/[(2L)!(2L')!]}"2 (16) 

and J = L+ L'. The QLt?, are spherical tensor components of the 2L multipole with 
respect to a frame fixed in molecule 1, a solvent molecule. The value of t is 

t=L+L'+ 1. (17) 
To derive a potential of mean torque from equation (13) we average first over the 

orientations of rI2 .  In the standard molecular mean field treatments this vector is 
assumed to be distributed uniformly over all orientations, and the average, C i M ,  is 

q M = ~ J O ~ M C l ,  (1 8) 

where the superscript + is used to indicate that this is an order parameter for 
intermolecular vectors. For the electrostatic terms J = L + L', and L and L' cannot be 
zero, so that from equation (18) it follows that all these terms vanish. 

Non-vanishing electrostatic terms can contribute to the potential of mean torque 
only if the distribution of r I 2  is non-spherical, and indeed in the nematic phase the 
symmetry of the distribution need be no higher than Dmk Potentials of mean torque 
consistent with this symmetry were derived by Humphries et al. [S] for cylindrically 
symmetric liquid crystal molecules, but without considering the contributions of 
specific interactions. Chandrasekhar and Madhusudana [9] also derived a potential of 
mean torque which assumed cylindrical symmetry for the distribution of the r12 vector, 
but although they did consider electrostatic interactions, they neglected the 
quadrupole-quadrupole term, which in fact is the only term which gives a contribution 
to U(fi2, y 2 ) .  This arises because with the assumption of cylindrical symmetry for the 
distribution of rI2 ,  J must be even, and L=L'. If we also assume cylindrical symmetry 
about r12 then M is zero. The only terms in equation (15) which need be considered are, 
therefore, the dipole-dipole (J = 2) and quadrupole-quadrupole (J = 4) terms. Averag- 
ing over the orientations of the solvent molecules eliminates the dipole-dipole term 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
2
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Potentials of mean torque for solutes 647 

because the first rank order parameters, 
quadrupole-quadrupole term in equation (1 5 )  has the form 

of the solvent molecules are zero. The 

Averaging over the orientations of the solvent molecules and the solute-solvent 
separations gives the contribution to the potential of mean torque as 

ue(Q2)= x G e Z m n C 2 , n ( Q J C Z , m ,  (21) 

AQQ is a constant whose magnitude can be derived from the general expression given by 
Stone 171, and C4+,o is a fourth rank order parameter for the solute-solvent vectors. 
Note that if cylindrical symmetry about r12 is still assumed for the solvent molecules, 
then il is still predicted to be independent of solvent and temperature if the quadrupole- 
quadrupole term is the only contribution to the potential of mean torque. Note too that 
C4+,o is expected to depend on temperature, so that the temperature dependence of 
Ue(b2, y2) is determined by C:,0C2,0. Equation (21) is equivalent to the contribution to 
U(b2,y2), proposed by Patey et al. [3], from the interaction between a solute 
quadrupole and the electric field gradient F,, produced by the solvent molecules. F,, is 

F,, = A@Q~;~~Q\~,)OC:, o ~ 2 ,  

and is dependent on both the solute and solvent. 
The assumption of cylindrical rather than spherical symmetry for the distribution 

of the r I2  changes the form of the contribution to U(B2, y 2 )  of the dispersion interaction. 
The dispersion interaction is such that three terms survive the averaging over Q12, and 
we obtain [7] 

(24) 

(25) 

-d C 
U d ( b 2 , ~ 2 ) = x ~ 2 r n n  2 , r n C 2 , n ( 8 2 ,  ~ 2 )  

U"Zn = r;~c$,),,&)n(Ad + BdC;, + CdC:, o), 

with 
__ 

where Ad, Bd and Cd are constants. Again the additional terms do not predict either a 
temperature or solvent dependence of A. 

The contribution of short-range repulsion to the intermolecular potential is a 
complicated function with strong interdependences of radial and angular variables. Of 
course, any continuous, well-behaved function of these variables can be expanded in 
the form of equation (13), but the expansion of the short-range repulsion interaction in 
this form contains many large terms. Therefore, it cannot be interpreted in the 
descriptive manner that we have used for the electrostatic and dispersion interactions. 
A t  the phenomenological level, however, such a contribution should exist, and we shall 
assume that there is a contribution to the magnitude of the GZmn from this source which 
we shall represent simply as ti;,,. Thus, there are in general, three conditions to the 
%Ill, 

- 

(26) -d 
U ~ r n n = t i ; r n n + ~ ~ r n n  + G m n .  
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648 Potentials of mean torque f o r  solutes 

For the solute the appropriate axes to be used for calculating the values of each of the 
contributions to tizm,, are the principal axes for the solute order matrix, which will 
usually be fixed by symmetry. The solvent molecules, however, will always have low 
symmetry which means that the principal axes for the total interaction tensor will not 
coincide necessarily with the principal axes for the individual interactions. In 
calculating the three terms in equation (26) it is necessary to use the principal frame for 
the total interaction tensor as the common axis system for the solvent molecules. 

3. Conclusion 
Electrostatic terms do contribute to potentials of mean torque, but only if the 

distribution of intermolecular vectors has less than spherical symmetry, in which case 
the ti;,,,n depend on an order parameter C4+,o for the intermolecular vectors rij The 
assumption of cylindrical symmetry for the ri j  also affects the form of the contributions 
to the potential of mean torque from the dispersion interaction, such that ti;,,,,, depends 
on order parameters C:,, and C;, for the rii. The average electric field gradient, F,,, 
produced at a solute by the solvent molecules, is predicted to depend on the product 
Q$',,'oC:,,Cz, ,. It is difficult to understand, therefore, why F,. obtained from experiment 
should apparently change sign consistently for different solutes in the pair of solvents 
EBBA and ZLI 1132. This point, and the general question of whether it is possible to 
identify, and understand, the importance of the electrostatic contribution to U(b2, y 2 )  is 
discussed in the following paper, which reports on the orientational order of two 
solutes of different polar character dissolved in a range of liquid crystal solvents with 
different structures. 
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